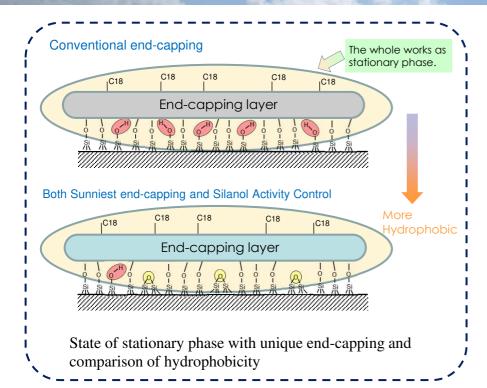
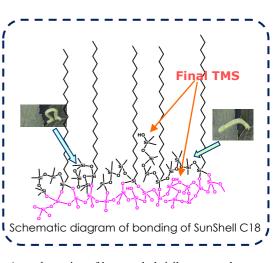


HPLC column

C18, C18-HT, RP-AQUA, C8, PhE, Biphenyl

Sunniest




ChromaNik Technologies Inc.

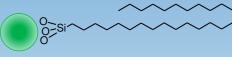
Unique end-capping by new concept

This figure shows comparison of hydrophobicity between two C18 stationary phases. We developed silanol activity control technique which was a reaction at extremely high temperature. This technique makes residual silanol groups change to siloxane bond. The upper one is a C18 phase with conventional end-capping and the lower one is a C18 phase with both Sunniest end-capping and silanol activity control. A residual silanol group contributes as a polar site and makes hydrophobicity of stationary phase decrease. On the other hand siloxane bond in the lower one doesn't make hydrophobicity decrease. Consequently the lower one is more hydrophobic than the upper one.

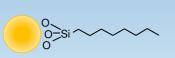
An end-capping of hexamethyltrisiloxane works as an arm. This arm moves like a Geometrid caterpillar, so that a functional group on the tip of the arm can bond with a silanol group which is located anywhere. Finally TMS reagent is bonded to a remaining silanol group.

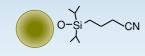
Features

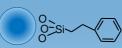
- ★ Little residual silanol groups by an unique bonding technique
- ★ Excellent stability, especially under acidic pH conditions
- ★ Sharp peak shape for acidic, basic and chelating compounds
- \star RP-AQUA with C30 bonding and Biphenyl offer Performance in 100% aqueous conditions, and shows enhanced retention of polar compounds.

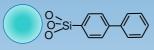

SUNNEST

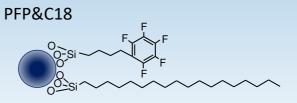
STATIONARY PHASE


Reversed phase


RP-AQUA, C30


С8,

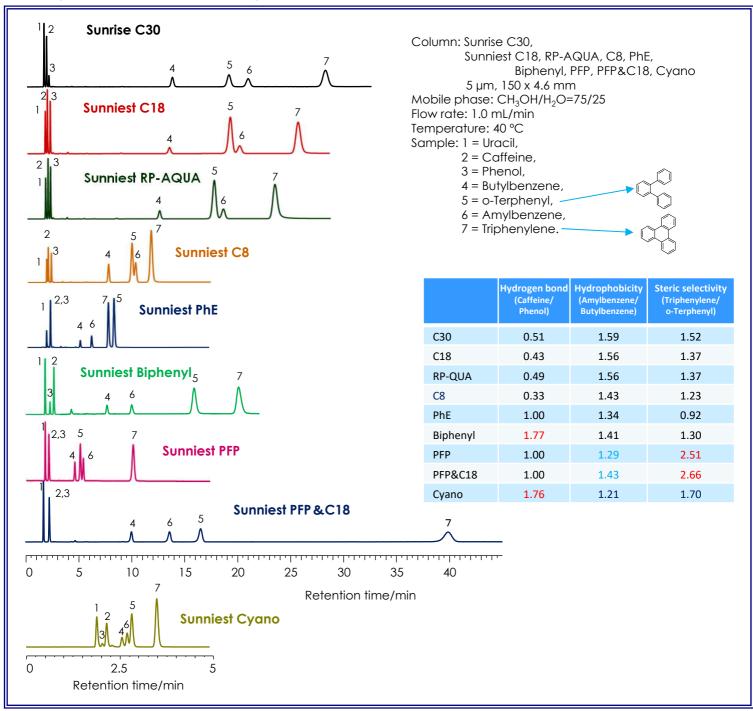

Cyano


PhE

Biphenyl

PFP F

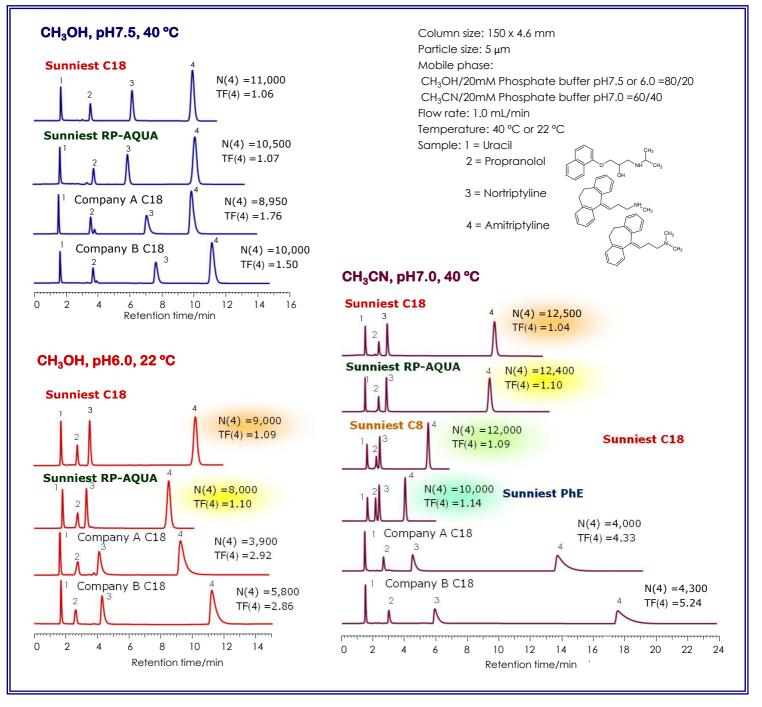
Normal phase & HILIC


Silica

	Particle size (µm)	Pore diameter (nm)	Specific surface area (m²/g)	Carbon content (%)	Bonded phase	End-capping	pH range	USP L line
Sunniest C18	1.8, 3 and 5	12	340	16	C18	Sunniest end-capping	1.5 - 10	L1
Sunniest C18-HT	2	10	340	16	C18	Sunniest end-capping	1.5 - 10	L1
Sunniest RP-AQUA	3 and 5	12	340	16	C30	Sunniest end-capping	2 - 8	L62
Sunniest C8	3 and 5	12	340	10	C8	Sunniest end-capping	1.5 - 9	L7
Sunniest PhE	3 and 5	12	340	10	Phenylethyl	Sunniest end-capping	1.5 - 8	L11
Sunniest Biphenyl	5	12	340	11	Biphenyl	Sunniest end-capping	1.5 -9	L11
Sunniest PFP	5	12	340	10	Pentafluorophenyl	TMS end-capping	2 - 8	L43
Sunniest PFP&C18	5	12	340	14	PFP + C18	TMS end-capping	2 - 8	L43
Sunniest Cyano	5	12	340	5.5	Diisopropylcyanopropyl	/I No 2-8		L10
Sunniest Silica	3 and 5	12	340	0	Bare silica	No	1 - 5	L3

Characteristics of Sunniest

Separation of standard samples

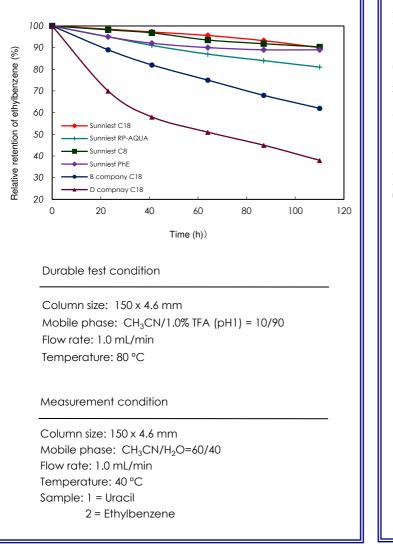


Nine types of stationary phases were compared hydrogen-bonding α (Caffeine / Phenol), hydrophobic α (Amylbenzene / Butylbenzene), and steric selectivity α (Triphenylene / o-Terphenyl). The hydrogen bonding expressed by the separation factor of caffeine and phenol was lower in the alkyl group stationary phase with high temperature end-capping, but slightly higher in PhE (phenethyl group), PFP (pentafluorophenyl group), and PFP & C18. The elution times of caffeine and phenol were the same, and the separation factor was 1. Biphenyl was subjected to high-temperature end-capping and was almost unaffected by residual silanol groups, but the hydrogen-bonding value was 1.77, showing high hydrogen-bonding. This is a characteristic of Biphenyl, and it is thought that it has a large hydrogen bond property due to the bonding of two benzene rings. Cyano was not end-capped, and it is thought that the hydrogen bonding was increased due to the influence of the residual silanol groups. Hydrophobicity is higher in the stationary phase with higher carbon content. The phenyl-based stationary phase is lower than the alkyl-based stationary phase. PFP & C18 is a stationary phase with increased hydrophobicity of PFP, and both stationary phases have the same hydrogen bonding property and steric selectivity, but only the hydrophobicity is changed. The steric selectivity tends to increase as the alkyl group becomes longer, but PFP and PFP & C18 have extremely large values. And it is expected to show specific separation. The elution order is different between the alkyl group stationary phase and the phenyl group stationary phase, and there is a large difference in separation selectivity.

3

Evaluation of End-capping

Comparison of plates number (N) and USP tailing factor (TF) of amitriptyline

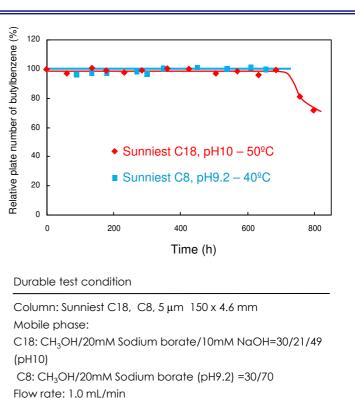


Amitriptyline is widely used to evaluate residual silanol groups on the C18 stationary phase. Peak shape of Amitriptyline was compared under 3 kinds of conditions such as methanol/phosphate buffer/40 °C, methanol/phosphate buffer/22 °C and acetonitrile/phosphate buffer/40 °C. Majority of the HPLC columns offered good peak shapes under methanol/phosphate buffer/40 °C conditions. However using Mobile phase of acetonitrile/phosphate buffer/40 °C, most of the columns (Refer column A and B) offered high extent of tailing unlike Sunniest columns offering a symmetrical peak.

Sunniest C18, RP-AQUA and C8 columns allow to use a wide range of mobile phase without peak tailing because of extremely low content of residual silanol groups on the stationary phase.

Stability under acidic and basic pH conditions

Stability under acidic pH conditions was evaluated at 80 °C using acetonitrile/1% trifluoroacetic acid solution (10:90) as mobile phase. 100% aqueous mobile phase expels from the pore of packing materials by capillarity and packing materials don't deteriorate. 10% acetonitrile in a mobile phase allows an accurate evaluation.¹⁻³⁾


★ Sunniest C18 has kept 90% retention for 100 hours under severe conditions of acetonitrile /1% trifluoroacetic acid solution (pH 1)at 80 deg C.

Our Unique bonding technique offers significant enhancement of column life,

Considering the Sunniest RP-AQUA C30 ligand length the Sunniest RP-AQUA is less stable than Sunniest C18. However, Sunniest RP-AQUA C30 column with high temparature bonding along with end capping offers longer column life in comparison to other RP Aqua columns.

- 1) N. Nagae, T. Enami and S. Doshi, LC/GC North America October 2002.
- 2) T. Enami and N. Nagae, American Laboratory October 2004.

3) T. Enami and N. Nagae, BUNSEKI KAGAKU, 53 (2004) 1309.

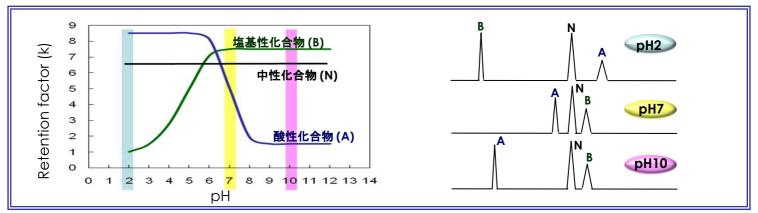
Temperature: C18 - 50 °C, C8 - 40 °C

Measurement condition

Column: Sunniest C18, C8, 5 μ m 150 x 4.6 mm Mobile phase: CH₃OH/H₂O=75/25 Flow rate: 1.0 mL/min Temperature: 40 °C Sample: 1 = Butylbenzene

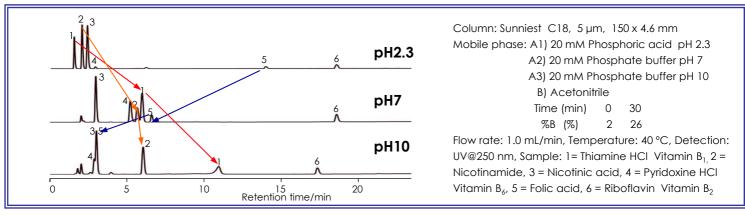
Stability under basic pH conditions was evaluated at 50 °C using methanol/Sodium borate buffer pH 10 (30:70) as a mobile phase. Sodium borate is used as a alkaline standard solution for pH meter, so that its buffer capacity is high.

Elevated temperature of 10 °C makes column life be one third. When Sunniest C18 column is used at 40 °C, column life becomes 2,000 hours. Most of the HPLC columns stability data is offered at ambient room temperature alternate 25 °C at pH 1-10 units. At temperature of 25 °C, the column life is sixteen times longer than that at 50 °C.

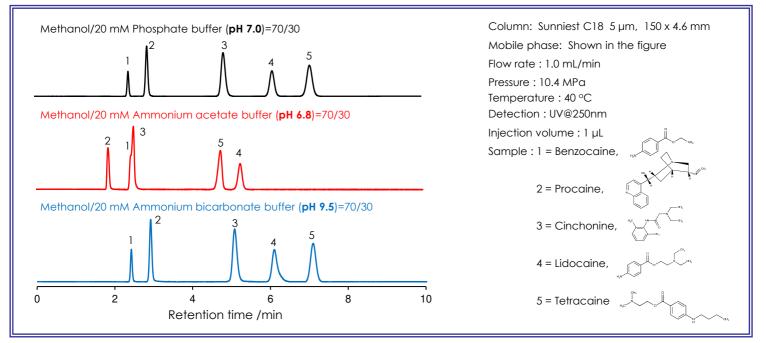

★ Sunniest C18 offers performance at elevated pH and temperature. Regarding stability under basic pH condition, there are very few C18 column like Sunniest C18 & Hybrid type C18 which can sustain and offer performance under such challenging conditions of high temperature and pH. It is considered that our double end-capping & base deactivation technique leads higher stability.

★ Sunniest C18 has operational pH Range from 1.5 to 10. Sunniest C8,Phenyl has operational pH Range 1.5 to 9 and Sunniest RP-Aqua and Pentafluorophenyl (PFP) at pH 2-8..

Sunniest C18



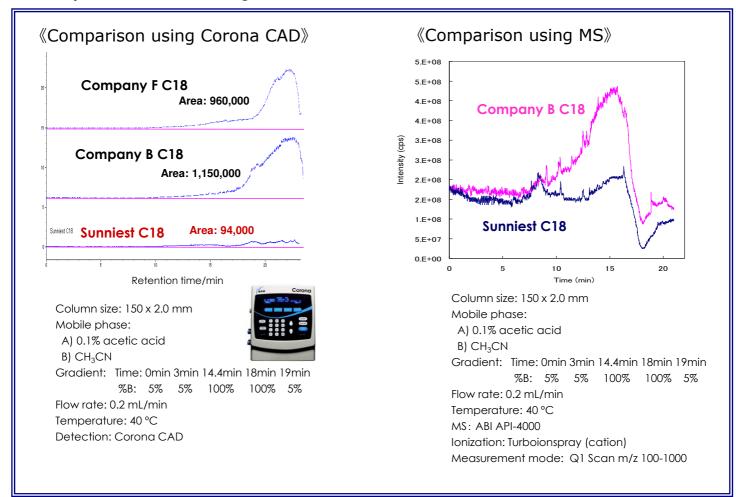
Relationship between pH and retention of Acidic, Basic and Neutral compounds



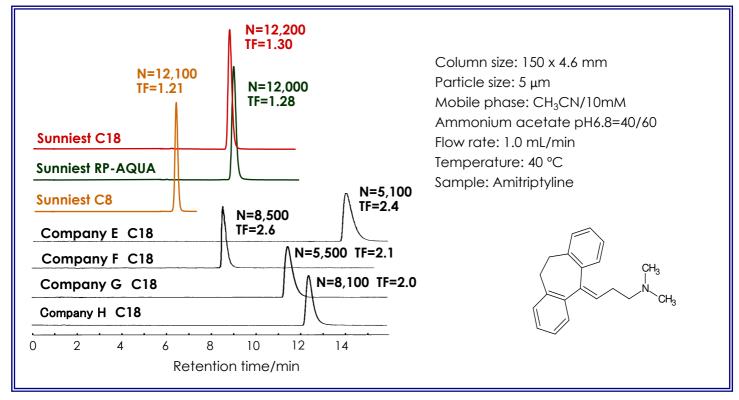
Ionic compounds are promoted or suppressed in ionization by the mobile phase pH. The higher the pH of the mobile phase for acidic compounds and the lower the pH of the mobile phase for basic compounds, the more ionization is promoted and the higher the polarity, so the retention is smaller.

pH selectivity

Separation of local anesthetic and effect by pH of mobilr phase


Separation using a neutral phosphate buffer may not be reproducible if changed to ammonium acetate salt for LC / MS, but separation can be improved by adjusting to alkaline with ammonium bicarbonate buffer. This is the case for the above separation of local anesthetics.

In the analysis of ionic compounds, pH can significantly change the separation selectivity. Since the Sunniest C18 column has highly stable under basic pH condition and can use an alkaline mobile phase with a pH of 10, the mobile phase conditions can be changed significantly from acidic to alkaline, and the optimum analytical method can be established.


Sunniest C18

Comparison data: Bleeding from column

Separation of antidepressants using Acetonitrile and Ammonium acetate for LC/MS

Sunniest RP-AQUA

Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

Reproducibility of retention under 100% aqueous conditions

★ C18 and C8 reversed phases exhibit decreased and poorly reproducible retention under more than 98% aqueous conditions as shown in Fig. 1. This problem traditionally has been explained as being the result of ligand collapse or a matting effect. Nagae¹⁻³ ascertained , however , that the mobile phase was being expelled from the pores of the packing material under 100% aqueous mobile phase conditions, as Fig. 2 shows.

★ When the surface of packing materials isn't wet by water, water used as a mobile phase expels from the pore of the packing material by capillarity. This is a reason why reproducibility in retention is low under 100% aqueous conditions. Reversely pressure around the packing material makes water permeate into the pore of the packing material to overcome a force worked by capillarity.

In other words, the surface of a reversed phase like C18 isn't wet by water anytime even if water permeates into the pore of the packing material or not. So it is wrong that we say "dewetting" when water expel from the pore. Saying "Depermeating" is more appropriate.

★ Sunniest RP-AQUA /C30 is a reversed stationary phase, so that it is not wet with water. However the contact angle of water on the surface of Sunniest RP-AQUA /C30 is less than that of a conventional C18. Expelling force (pressure) acted by capillarity on Sunniest RP-AQUA /C30 is less than atmospheric pressure. So, Sunniest RP-AQUA /C30 shows reproducible retention under 100% aqueous conditions.

1) N. Nagae, T. Enami and S. Doshi, LC/GC North America October 2002. 3) T. Enami and N. Nagae, BUNSEKI KAGAKU, 53 (2004) 1309.

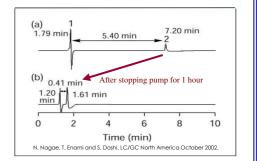


Fig. 1 Retention behavior of a C18 column under 100% aqueous mobile phase conditions

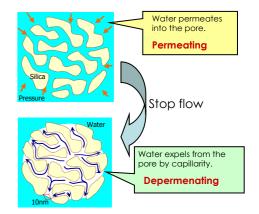
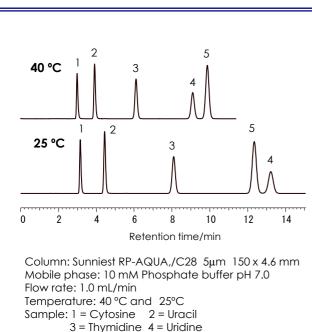



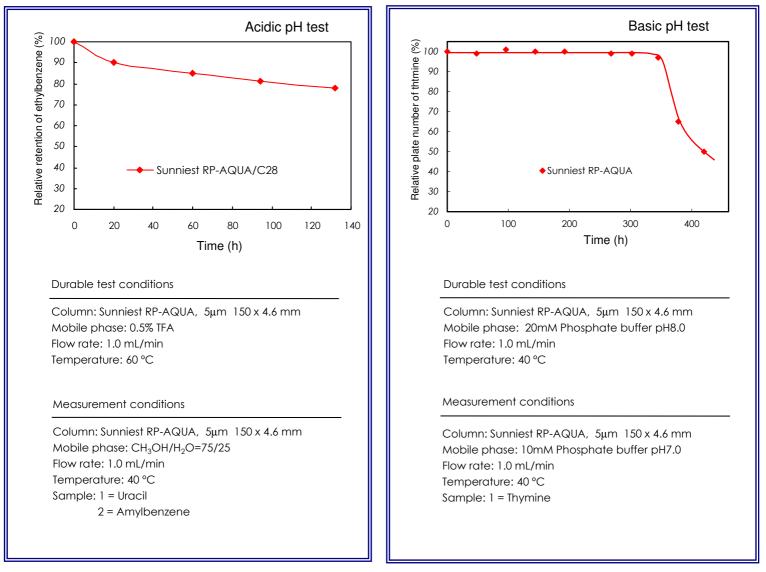
Fig. 2 Schematic diagram of C18 particle

2) T. Enami and N. Nagae, American Laboratory October 2004.

Separation of nucleic acid bases

Change of retention of thymine at 40 °C (measurement every stop flow for 1 hour)

Sunniest RP-AQUA/C30 showed more than 97% of reproducibility in retention using 100% aqueous buffer as a mobile phase.


5 = Thymine

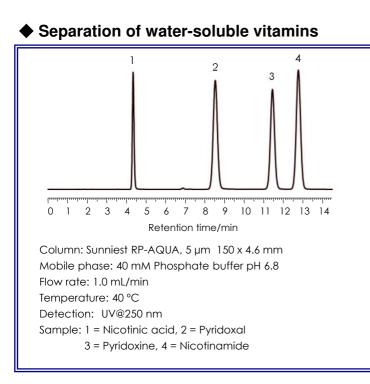
¹⁰⁰ 8 90 of thymine 80 70 60 Relative retention 50 40 30 20 10 0 2 3 Measurement number every stop flow

Sunniest RP-AQUA

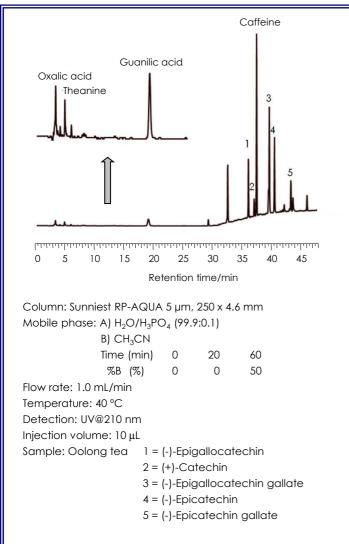
Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

Stability of Sunniest RP-AQUA/ C30 under 100% aqueous conditions

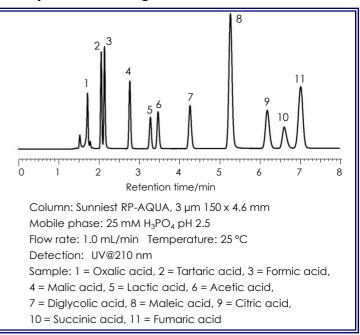
It is important that stability is evaluated for RP-AQUA columns under 100% aqueous conditions because RP-AQUA column life becomes longer with incremental contents of organic solvent in a mobile phase. Sunniest RP-AQUA/C30 column can be used under 100% aqueous conditions from pH 2 to pH 8.

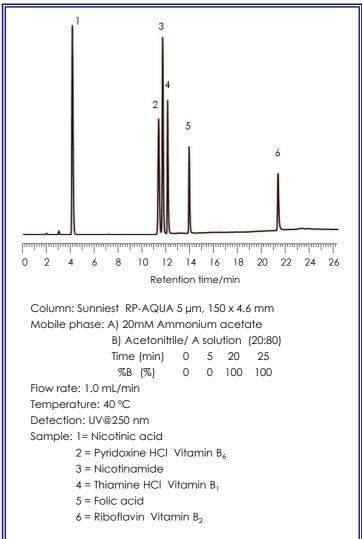

★ Sunniest RP-AQUA/C30 column can be used under 100% aqueous conditions from pH 2 to pH 8. Sunniest RP-AQUA/C30 is one of the most stable aqua type column.

 \star Sunniest RP-AQUA/C30 column with high temperature bonding along with end capping offers longer column life in comparison to other RP Aqua columns

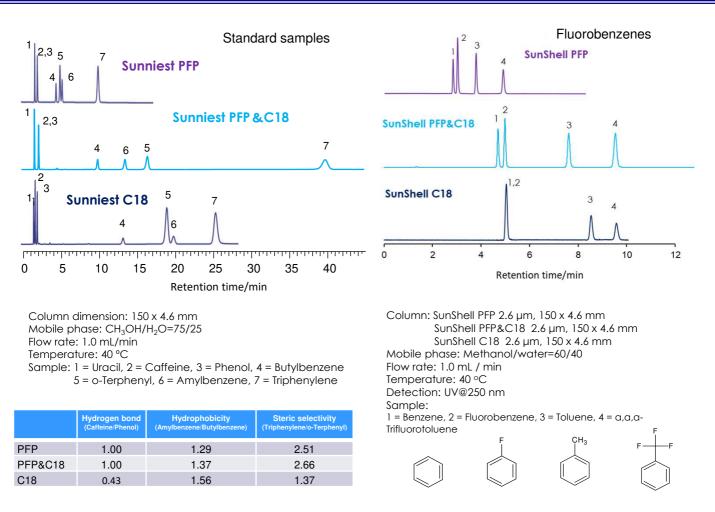


Sunniest RP-AQUA



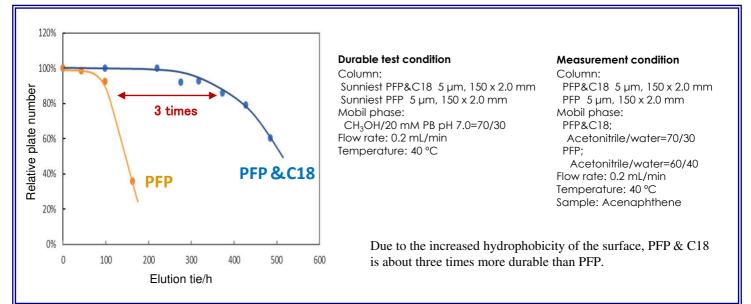

Separation of Oolong tea

Separation of organic acids

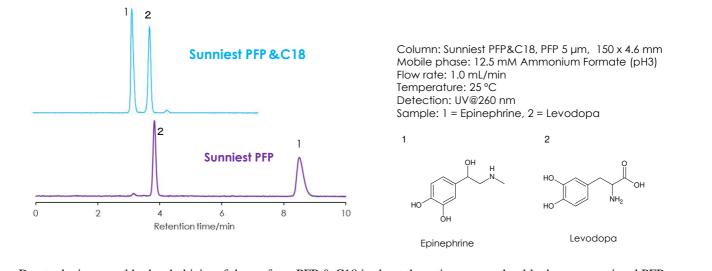


10

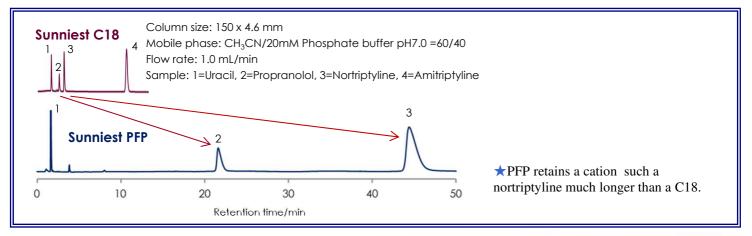
Sunniest PFP&C18


Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

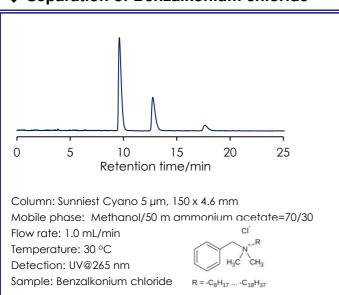
Comparison of retention time


Compared to PFP, PFP&C18 has the same stereoselectivity, but its hydrophobicity is significantly increased and its retention time is longer. As for the separation unique to PFP, such as the separation of fluorobenzenes, PFP&C18 has achieved the same separation.

Evaluation of Stability


Sunniest PFP&C18 Sunniest PFP Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

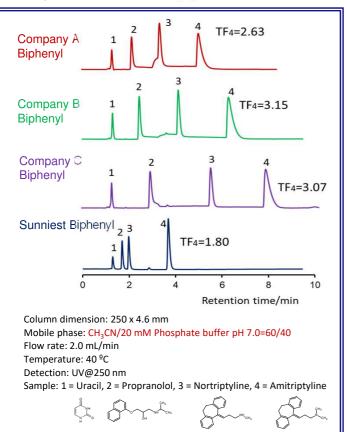
Comparison of highly polar compounds



Due to the increased hydrophobicity of the surface, PFP & C18 is about three times more durable than conventional PFP. Separation of highly polar compounds such as catecholamines significantly changes the selectivity of PFP and PFP&C18, with PFP tending to retain more. $_{\circ}$

Retention comparison between C18 and PFP

Separation of Benzalkonium chloride


Sunniest Cyano

Sunniest Biphenyl

Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

Bleed comparison under acidic condition

Sunniest Biphenyl

Company A Biphenyl

Company B Biphenyl

Company C Biphenyl

8

9

Retention time/min

Time (min) 0 5 10 17 18 35

10 10 90 90 10

10

11

10

12

Chromatogram of a base line

at the third gradient cycle

Column dimension: 50 x 2.1 mm

%B

Mobile phase: A) 1% H₃PO₄ (pH 1.2)

B) Acetonitrile

6

Bleed test condition

Gradient program

Flow rate: 0.3 mL/min

Detection: UV@250 nm

Temperature: 40 ºC

Separation of amitriptyline

Comparison of stability

80

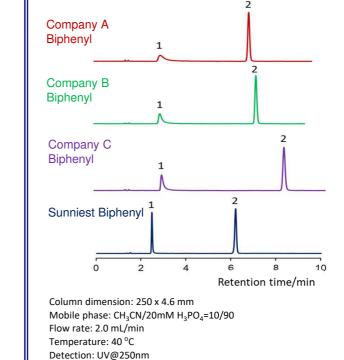
70

60

50

40

30


20

10

0

-10 5

Absorbance/mAU

Sample: 1 = 8-Quinolinol (Oxine), 2 = Caffeine

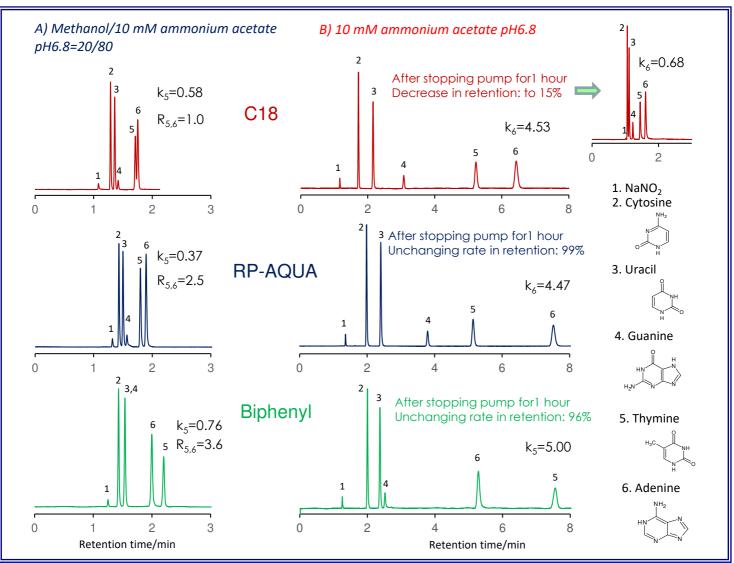
Separation of a chelating compound

Comparison of plate number under weakly alkaline condition 100 Relative plate number/% 80 60 Sunniest Biphenyl 40 Company A Biphenyl **Company B Biphenyl** 20 Company C Biphenyl 0 0 50 100 150 200 250 300 Elution time/h

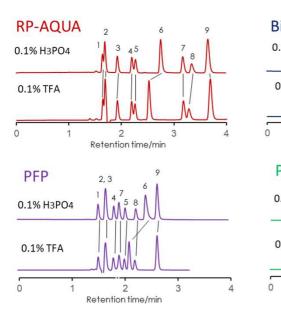
Elution condition of stability test

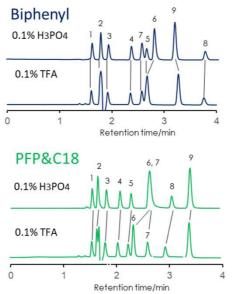
Column dimension: 50 x 2.1 mm Mobile phase: 20 mM Sodium phosphate pH 8.0 Flow rate: 0.2 mL/min Temperature: 40 ºC

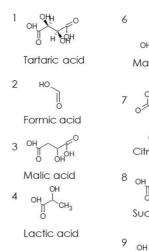
Measurement condition of plate number


Mobile phase: CH₃CN/H₂O=50/50 Flow rate: 0.2 mL/min Temperature: 40 °C Detection: UV@250 nm Sample: Butylbenzene

Stability under acidic condition compared baseline changes with gradient elution of 1% aqueous phosphate solution and acetonitrile. Biphenyl groups are cut off from the silica surface under acidic condition and elute out of the column as the amount of organic solvent increases. Baseline variability detected cut Biphenyl groups, with Sunniest showing the least desorbed and high acid stability. In addition, under weakly alkaline condition, the silica dissolved and the column-in side was dented, so the theoretical plate number of the columns were compared. Since the Biphenyl column has high reproducibility of retention time even in a 100% aqueous mobile phase (see page 14) and is effective for separating highly polar compounds, stability comparison was performed under the condition of pH 8 that does not contain an organic


Sunniest Biphenyl

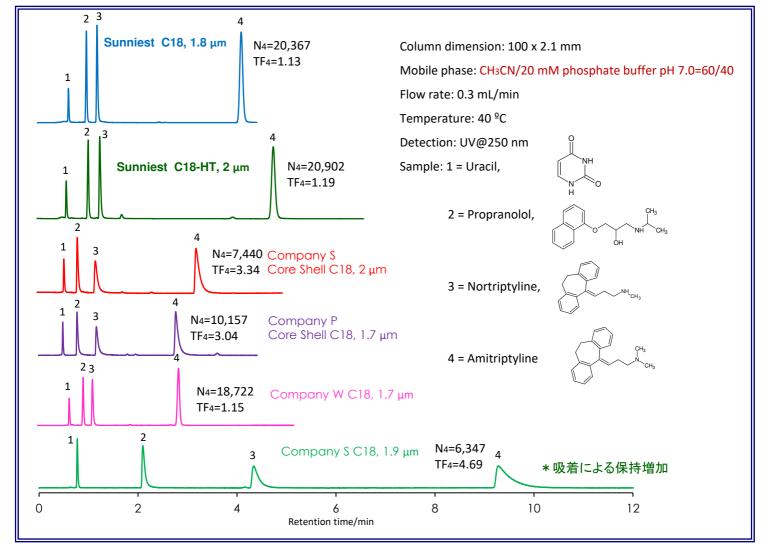

Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica


Comparison of stationary phases using nucleic acid bases

Comparison of organic acid

Fumaric acid

Sunniest C18 1.8 μm, C18-HT 2 μm


Features

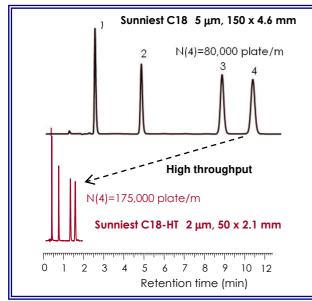
 \checkmark The 1.8 µm particles use a silica gel with the same physical characteristics as the 3 µm and 5 µm particles, and there is no difference in separation depending on the particle size.

✓ High-pressure packing achieves 100 MPa of a maximum operating pressure for 1.8 μ m particles and 70 MPa of a maximum operating pressure for 2 μ m particles.

- \checkmark Low pressure and high theoretical plate by precision classification
- ✓ The inertness due to the Sunniest end-capping sharpens all peaks and leads usage of a wide pH range (pH 1.5 to 10).
- ✓ 2 μ m Sunniest C18-HT has a 25% lower column pressure than 1.8 μ m Sunniest C18.

★Unique surface modification (Comparison of amitriptyline as a basic compound)

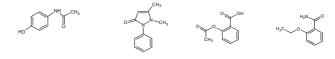
Specification of Sunniest C18, 1.8 µm (Sunniest C18 shows the same characteristics for 1.8, 3 and 5 µm.)


Packings	Particle size (µm)	Pore diameter (nm)	Specific surface area (m²/g)	Carbon loading (%)	Phase	End-capping	Available pH range	USP category
Sunniest C18	1.8, 3 and 5	12	340	16	C18	High temperature reaction	1.5 - 10	L1
Sunniest C18-HT	2	10	340	16	C18	High temperature reaction	1.5 - 10	L1

* Maximum operating pressure is 100 MPa for Sunniest C18, 1.8 μm and 70 MPa for Sunniest C18-HT 2 μm.

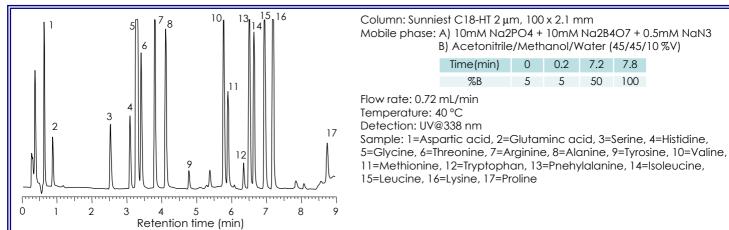
15

★ Separation of Analgesics



Sunniest C18, C18-HT RP-AQUA, C8, PhE, Biphenyl, PFP, PFP&C18, Cyano, Silica

Mobile phase: CH₃CN/0.1% Formic acid = 20/80 Flow rate: 1.0 mL/min for 150 x 4.6 mm 0.6 mL/min for 50 x 2.1 mm Temperature: 40 °C


Detection: UV@230 nm Sample:

1=Acetaminophen, 2=Antipyrine, 3=Aspirin, 4=Ethenzamide

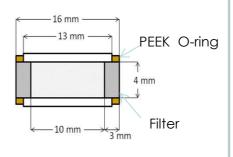
 $2 \ \mu m$ particle allows to reduce retention time because high efficiency is kept under high flow rate conditions. As shown the above chromatograms, analytical time reduced 1/8 without sacrifices of separation by using $2 \ \mu m$, 50 x 2.1 mm column instead of 5 μm 150 x 4.6 mm column.

★ Separation of Amino Acids derivatized with OPA

★ Guard column for Sunniest C18 1.8 μm, C18-HT 2 μm

SunShell guard cartridge column is recommended for Sunniest C18 µm, 2 µm.

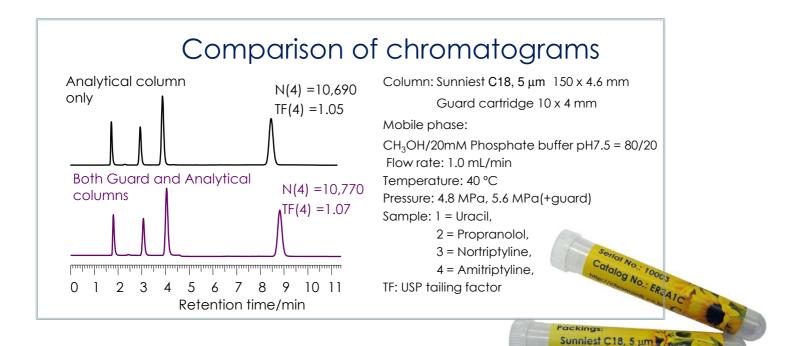
- The cartridge column is packed with SunShell C18 (RP) and Core shell silica (S) into a cartridge sized 3 x 2 mm i.d.
- * RP guard cartridge is used for all reversed phases and S guard cartridge for hilic phases.
- * Low dead volume structure
- * Upper pressure limit is more than 60 Mpa
- * Availablr for 2.1 mm i.d. to 4.6 mm i.d. columns


Ordering Information of SunShell Guard Cartridge Column

Description	Part number
SunShell Guard Cartridge RP Starter Kit (holder, cartridge, tubing)	CB32CK
SunShell Guard Cartridge RP for exchange (2 PCS)	CB32CC
SunShell Guard Cartridge S Starter Kit (holder, cartridge, tubing)	CS32CK
SunShell Guard Cartridge S for exchange (2 PCS)	CS32CC
SunShell Guard Cartridge holder	HOL2CC

Guard Cartridge (10 x 4 mm)

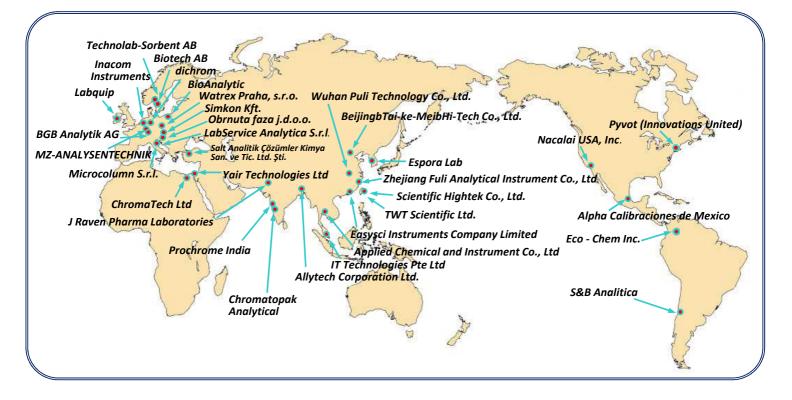
Feature *Simple structure *Low dead volume *Available for not only 5 µm column but also 3 µm column



Schematic Diagram of Cartridge 10x4mm

Photo of Cartridge and Holder

erial No.: 1002


	Particle size	Catalog No.
Sunniest C18, 5 μm Guard cartridge column (1-pak + Holder) 4 x 10 mm	5 μm	EB3A1H
Sunniest RP-AQUA, 5 μm Guard cartridge column (1-pak + Holder) 4 x 10 mm	5 μm	ER3A1H
Sunniest C8, 5 μ m Guard cartridge column (1-pak + Holder) 4 x 10 mm	5 μm	EC3A1H
Sunniest C18, 5 μm Guard cartridge (4-pak) 4 x 10 mm	5 μm	EB3A1C
Sunniest RP-AQUA, 5 μm Guard cartridge (4-pak) 4 x 10 mm	5 μm	ER3A1C
Sunniest C8, 5 μm Guard cartridge (4-pak) 4 x 10 mm	5 μm	EC3A1C
Sunniest Guard cartridge holder 4 x 10 mm		HOLA1C

* Sunniest Ordering information

	Packings	Inner diameter (mm)	2.1	3.0	4.6	10	20	USP category
		Length (mm)	Catalog number	Catalog number	Catalog number	Catalog number	Catalog number	
NE		30	EBA931					
	Sunniest C18 1.8 μm	50	EBA941	EBA341				
	Sunniest C18 1.8 µm	75 100	EBA951 EBA961	EBA351 EBA361				
		150	EBA901 EBA971	EBA301 EBA371				L1
		30	EB1931	EB1331				
	Sunniest C18-HT 2 μm	50	EB1941	EB1341				
		75	EB1951					
		100 Inner diameter	EB1961	EB1361				
	Packings	(mm)	2.0	3.0	4.6	10	20	USP category
		Length (mm)	Catalog number	Catalog number	Catalog number	Catalog number	Catalog number	
		50	EB2241	EB2341	EB2441			
		75	EB2251		EB2451			
	Sunniest C18 3 μm	100 150	EB2261 EB2271	EB2361 EB2371	EB2461 EB2471			
		250	EB2281	EB2371 EB2381	EB2481			L1
		50	EB3241	EB3341	EB3441		EB3841	
	Sunniest C18 5 µm	100	EB3261	EB3361	EB3461			
		150	EB3271	EB3371	EB3471		EB3871	
-		250 50	EB3281 ER2241	EB3381 ER2341	EB3481 ER2441	EB3781	EB3881	
	Sunniest RP-AQUA	75	ER2251		ER2451			
		100	ER2261	ER2361	ER2461			
	3 μm	150	ER2271	ER2371	ER2471			
_		250	ER2281	ER2381	ER2481			L62
	Sunniest RP-AQUA	50 100	ER3241 ER3261	ER3341 ER3361	ER3441 ER3461		ER3841	
	5 μm	150	ER3271	ER3371	ER3471		ER3871	
	5 µm	250	ER3281	ER3381	ER3481	ER3781	ER3881	
		50	EC2241	EC2341	EC2441			
	Suppliest C9.2 um	75 100	EC2251 EC2261	 EC2361	EC2451 EC2461			
	Sunniest C8 3 µm	150	EC2201	EC2301 EC2371	EC2401 EC2471			
		250	EC2281	EC2381	EC2481			L7
		50	EC3241	EC3341	EC3441		EC3841	
	Sunniest C8 5 μm	100	EC3261	EC3361	EC3461			
	•	150 250	EC3271 EC3281	EC3371 EC3381	EC3471 EC3481	 EC3781	EC3871 EC3881	
		50	EP2241	EP2341	EP2441			
		75	EP2251		EP2451			
	Sunniest PhE 3 μm	100	EP2261	EP2361	EP2461			
		150 250	EP2271 EP2281	EP2371 EP2381	EP2471 EP2481			
_		50	EP3241	EP3341	EP3441		EP3841	
	Suppiest DbF F um	100	EP3261	EP3361	EP3461			L11
	Sunniest PhE 5 μm	150	EP3271	EP3371	EP3471		EP3871	
-		250	EP3281	EP3381	EP3481	EP3781	EP3881	
		50 100	E83241 E83261	E83341 E83361	E83441 E83461			
NE	N Sunniest Biphenyl 5 μm	150	E83271	E83371	E83471			
147		250	E83281	E83381	E83481	E83781	E83881	
		50			EF3441			-
	Sunniest PFP 5 μm	100 150			EF3461 EF3471			L43
		250			EF3471 EF3481			
		50	EV3241	EV3341	EV3441			
	Sunniest PFP&C18 5 μm	100	EV3261	EV3361	EV3461			L43
N		150 250	EV3271 EV3281	EV3371 EV3381	EV3471 EV3481	 E\/2781	 E\/2991	
•		50	EV3281 EJ3241	EV3381 EJ3341	EV3481 EJ3441	EV3781	EV3881	
	Sunniest Cyano 5 µm	100	EJ3261	EJ3361	EJ3461			110
		150	EJ3271	EJ3371	EJ3471			L10
		250	EJ3281	EJ3381	EJ3481	EJ3781	EJ3881	-
		50 75	ES2241	ES2341	ES2441 ES2451			
	Sunniest Silica 3 μm	100	ES2251 ES2261	ES2361	ES2451 ES2461			
		150	ES2271	ES2371	ES2401			
		250	ES2281	ES2381	ES2481			L3
		50	ES3241	ES3341	ES3441		ES3841	-
	Sunniest Silica 5 µm	100 150	ES3261 ES3271	ES3361 ES3371	ES3461 ES3471		ES3871	
		250	ES3281	E\$3381	ES3481	ES3781	E\$3881	

*Our distributors in the world

ChromaNik Technologies Inc.

ChromaNik Technologies Inc.

Manufacturer

6-3-1 Namiyoke, Minato-ku, Osaka, 552-0001 Japan TEL: +81-6-6581-0885 FAX: +81-6-6581-0890 E-mail: info@chromanik.co.jp URL: http://chromanik.co.jp