
RP C18 column with a feature of a silanol group

Silanol Activity Controlled C18 Column

Comparison of separation for ethylbenzene and xylene

2 = 0-Xylene 3 = m-Xylene

4 = p-Xylene

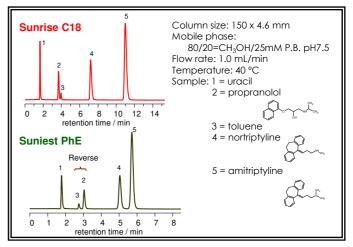
Sunrise Triacontyl (C30)

Sunrise Octacosyl (C28) ⁴ Sunrise Octadecyl-SAC (C18-SAC) has an interaction of silanol groups

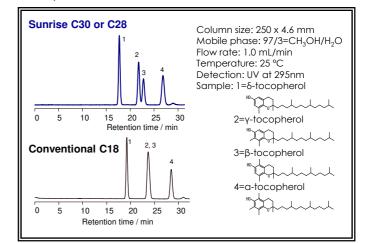
ChromaNik Technologies Inc. TEL: 06-6581-0885 http://chromanik.co.jp

Sunrise C30, C28 Sunrise C18-SAC

HPLC column


Name	Stationary phase	Carbon content	Ligand density	Particle size		
C30 Triacontyl	<u> </u>	18%	1.7 µmol/m ²	3 μm, 5 μm	Silica support Surface area : 340 m²/g Pore volume : 1.0 mL/g Pore diameter : 12 nm	
C28 Octacosyl	<u> </u>	18%	1.7 µmol/m ²	3 μm, 5 μm		
C18-SAC Octadecyl		14%	2.1 µmol/m ²	3 μm, 5 μm	End-capping Trimethylsilyl group (TMS)	
pH range of C30 and	C28: pH2~pH8, C18-SAC	: pH2~pH7.5				

Characteristics of end-capping type Sunrise series


C30, C28: (C30 and C28 shows the same separation.) ■ A long alkyl chain improves both separation of fat-soluble compounds to compare with C18 phase and an excellent reproducibility in retention under high aqueous conditions.

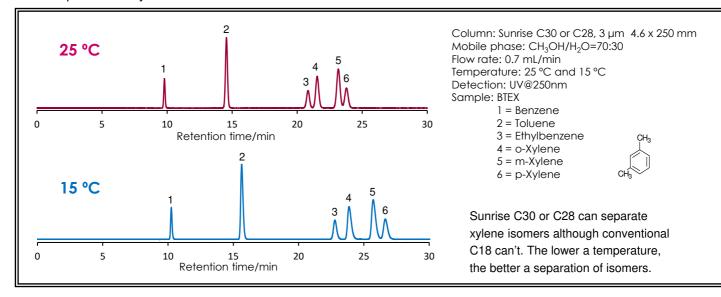
 Furthermore, a suitable ligand density of C28 allows to be obtained a shape peak shape even if more than 50% aqueous mobile phase is used.
 Different selectivity

C18: (C18 has stopped production. Sunniest C18 is recommended as a replacement.) Conventional C18 phase with full end-capping Separation of Basic compounds

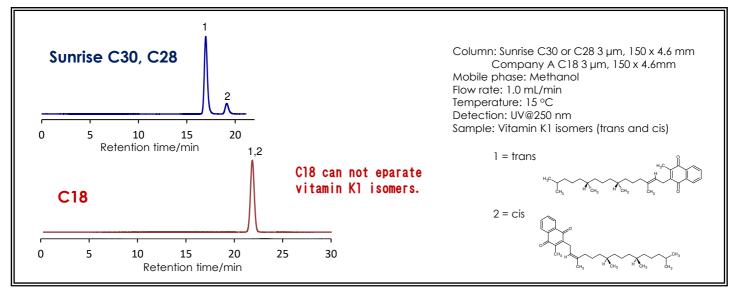
Separation of Vitamin E Isomer can be separated by C28

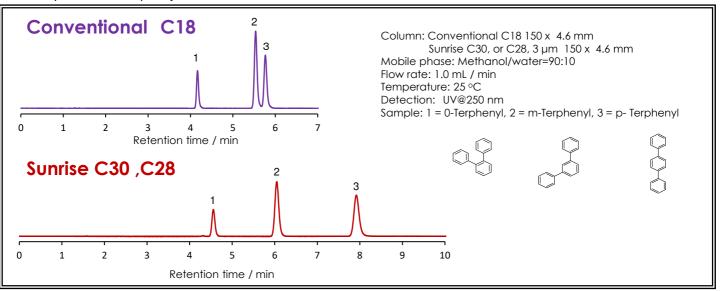
PhE:

(Sunrise PhE has stopped production. Sunniest PhE is recommended as a replacement)
■ Interaction based with p-electron such as p-p interaction
■ p-electron also interacts with a polar site of a compound, so that phenyl phase improves separation of polar compounds. Ethylene chain between silica surface and phenyl group allows a movable sphere of a phenyl group to be wide. A chain with more than three carbons shows more hydrophobic interaction, so that p-electron interaction decreases relatively.


Phenethyl (PhE) group is a suitable phenyl phase.

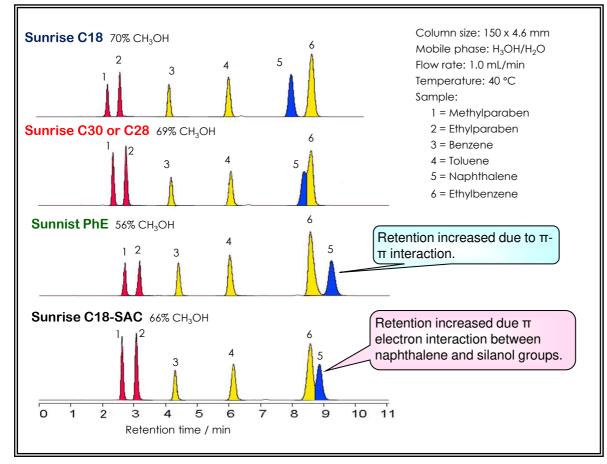
.....


Sunrise C30, C28

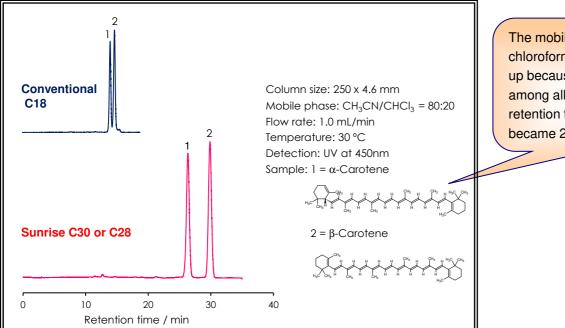

Separation of xylene isomers

Separation of vitamin K1 isomers

Separation of ter-phenyl isomers



Sunrise C28 Sunrise C18-SAC



HPLC column

Comparison of separation of α, β - carotene

The mobile phase including chloroform makes alkyl chains brash up because chloroform can enter among alkyl chains. Consequently retention times of C30 or C28 became 2 times longer than C18.

New generation reversed-phase utilized silanol groups

Silanol group and peak tailing

It is generally said that residual silanol groups on a stationary phase such as C18 (ODS) causes absorption or peak tailing for a sample. Especially silanol groups near a hydrophobic site don't solvate with water completely, so that they show high absorption for basic compounds. Its peak shows terribly tailing. Several end-capping techniques have been developed to solve these problems for many years.

Silanol activity control technology

ChromaNik developed the technique that decreased only silanol groups with high absorption activity to a basic compound and remained effective silanol groups on the stationary phase. Silanol activity control and no end-capping led the existence of silanol groups with high hydration which created a new and unique reversed-phase separation mode including hydrogen bond and ionexchange interaction. Furthermore, silanol activity controlling, then end-capping technique improved a peak shape of a basic compound exceedingly.

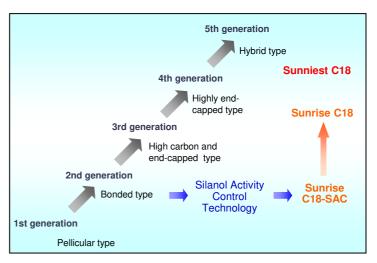
Feature of Sunrise series

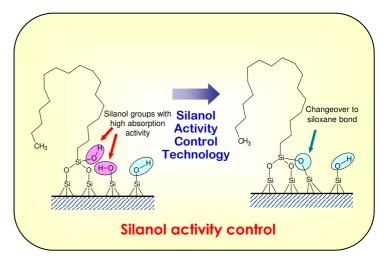
Sunrise C18

•The "1st Choice" column as a fully end-capped C18 column

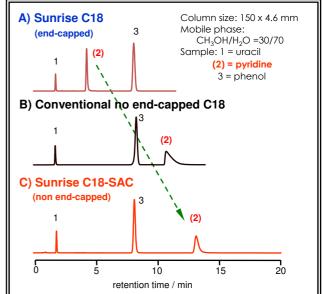
- •Full end-capping after silanol activity control
- •Reducing adsorption of a basic compound extremely
- •A good peak shape for a metal chelating compound
- Widely available for general reversed-phase separation

Sunrise C18-SAC


•The "2nd Choice" column which takes advantage of effective silanol groups interaction


Reducing silanol groups with high adsorption activity
The new separation mechanism including hydrogen

bond and ion-exchange interactionEffective for separation of a basic compound and a


• Effective for separation of a basic compound and a polar compound

• Different selectivity and improvement of separation without changing a mobile phase

The elution order of pyridine

Sunrise C18-SAC

Silanol Activity Controlled C18 HPLC Column

Sunrise series create an unique separation

* Effectiveness of silanol activity control: Comparison between Sunrise C18 and C18-SAC

Sunrise C18 is the so-called fully end-capped C18 column. It shows the same separation behavior as a conventional C18 column.

On the other hand, Sunrise C18-SAC shows hydrogen bond and ion-exchange interactions based on a residual silanol on the silica support in addition to reversed-phase separation. For example Sunrise C18 column separates a basic compound similarly as a conventional C18, while Sunrise C18-SAC makes retention of a basic compound be large because an ion-exchange interaction works although a non-ionic compound shows the almost same retention on both Sunrise C18 and C18-SAC. Furthermore, Sunrise C18-SAC shows large retention for a polar compound such as caffeine.

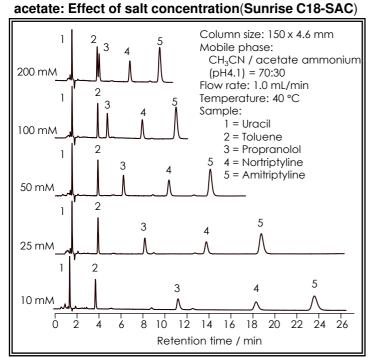
A) Sunrise C18 pH3.0 5 **B) Sunrise C18-SAC** pH3.0 5 A) Sunrise C18 pH4.5 **B) Sunrise C18-SAC** pH4.5 8 0 2 Δ 6 10 12 14 16 Retention time / min Column size: 150 x 4.6 mm Mobile phase: CH₃CN/20mM Phosphate buffer pH3.0 or pH4.5 = 50:50 Flow rate: 1.0 mL/min Temperature: 40 °C Sample: 1 = Uracil 2 = Propranolol 3 = Nortriptyline 4 = Amitriptyline 5 = Toluene

■ Comparison of selectivity for basic compounds

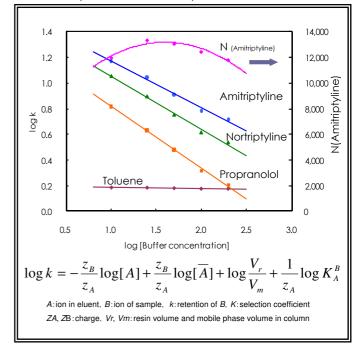
A) Sunrise C18 Column size: 150 x 4.6 mm 2 1 Mobile phase: CH₃CN/20mM H₃PO₄ = 10:90 Flow rate: 1.0 mL/min Sample: 1 = 8-Quinolinol (Oxine) 2 = Caffeine **B) Sunrise C18-SAC** 2 2 4 6 8 10 12 14 16 18 20 22 Retention time / min

Comparison of caffeine

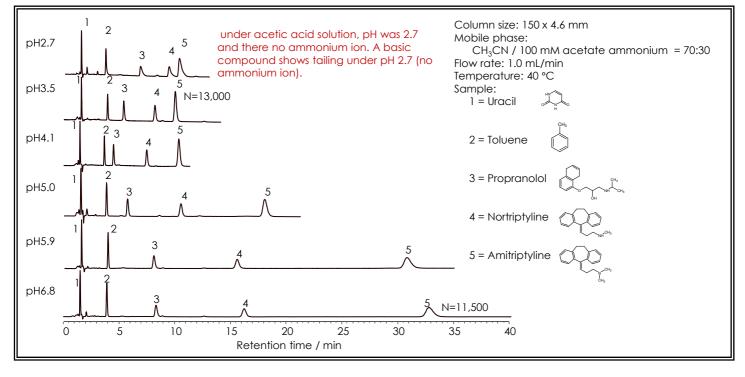
■ Comparison of peak shape and retention


Multiple mode separation is achieved on Sunrise series

* Silanol groups controlled its activity functions as ion-exchange groups


Sunrise C18-SAC is bonded with octadecylsilane on a pure silica gel and controlled its silanol activity without end-capping. Its carbon content is 14%.

Separation of basic compounds with ammonium


Separation on Sunrise C18-SAC is done including hydrogen bond and ion-exchange interaction based on silanol groups except for hydrophobic interaction. Control of pH and salt concentration of a mobile phase can regulate retention.

Relationship between buffer concentration and retention(Sunrise C18-SAC)

Chromatograms under different pH conditions (Sunrise C18-SAC)

Sunrise C30, C28, C18-SAC

* Sunrise series Analytical and Preparative Columns

Inner diameter	length	Sunrise C30, 3µm	Sunrise C30, 5µm	Sunrise C28, 3µm	Sunrise C28, 5µm
[mm]	[mm]	Cat. No.	Cat. No.	Cat. No.	Cat. No.
2.0	50	SM2241	SM3241	ST2241	ST3241
	75	SM2251	_	ST2251	_
	100	SM2261	SM3261	ST2261	ST3261
	150	SM2271	SM3271	ST2271	ST3271
	250	SM2281	SM32281	ST2281	ST3281
4.6	10	SM2411	SM3411	ST2411	ST3411
	50	SM2441	SM3441	ST2441	ST3441
	75	SM2451	—	ST2451	—
	100	SM2461	SM3461	ST2461	ST3461
	150	SM2471	SM3471	ST2471	ST3471
	250	SM2481	SM3481	ST2481	ST3481
10.0	250	_	SM3781	_	ST3781
20.0	250	_	SM3881	_	ST3881

Inner diameter	length	Sunrise C18-SAC, 3µm	Sunrise C18-SAC, 5µm
[mm]	[mm]	Cat. No.	Cat. No.
2.0	50	SA2241	SA3241
	75	SA2251	_
	100	SA2261	SA3261
	150	SA2271	SA3271
4.6	10	SA2411	SA3411
	50	SA2441	SA3441
	75	SA2451	—
	100	SA2461	SA3461
	150	SA2471	SA3471
	250	—	SA3481
10.0	250	—	SA3781
20.0	250	_	SA3881

ChromaNik Technologies Inc.

6-3-1 Namiyoke, Minato-ku, Osaka 552-0001 Japan TEL: +81-6-6581-0885 FAX: +81-6-6581-0890 Email: info@chromanik.co.jp